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ABSTRACT

The status report of which this is an abstract gives in
‘abbreviated form the resulté“of the research done by Tomlinson

Fort of Emory University under W.A.S.A. grant.

/6527

First, putting rather Weak_restrictions on ql(z), q2(z), ssa

an intensive study has been made:pf the series

@0

| 1 . .
(1) c (qy, Qpy oo0)
t%éi n 21’ 2 (g”f;ql(z))(z + qz(z)) + oﬁo,+'(z + qn(z))

A study is then made of difference equation (2). There is a
general theory followed by gppiications of series (1).

(2) pl2) ¥(2) + py(z)y(z « :hi(IZ)) + w0 +p (2)y(z + b (2)) = R(z)

where hj+1(z) - hl(Z)-f hj_l(z f hy(2)),

hj(Z) - rj(Z) + sj(?)i, O<ry<ry, —_— o

and r(z) monotonically increasing with x. . W
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Status Report by Tomlinson Fort for period December 1 1963

to June 1 196l on regearch done under N.A.S.A. grant made

to Emory University. The title of the project is,

"DIFFERENCE EQUATIONS WITH VARYING DIFFERFNCE INTER-
VALS AND DIFFERENCE EQUATIONS AND DIFFERFNTIAL

FQUATIONS WITH ALMOST PERIODIC COEFFICIENTS."

1. General

This research has been aimed primarily at the difference

equations (1) beiow and at the more general system of equations

(2).

Let h(z) be a function to be restricted somewhat as the

work demands. We also define a sequence of functions as follows:

hl(z) = h(z)

hz(z) = h(z) + h(z + h(z))
h3(z) = h(z) + h(z + h(z)) + h(z + h(z) + h(z + h(2))
hn(z) = h(z) + hnal(z + h(z)).

We now write the equation
(1) po(z)y(z) + pl(z)y(z - hl(z)) + pz(z)y{z + hz(z)) + oeo

+ p(2)y(z + h (2') = R(z).



We assume p (2) £ 0 and Py 2) £ 0 in the portion of the plane
considered. We note that to get y(z + hj(z)) ve replace 2

by z + h(z) in y(z + hjwl(z))’

The linear system above referred to is
Y, (z + h(z)) = a19(2)y(2) + a;,(2)y,(2) + coo + a, (2)y,(2) + r;y(2)
Yo(z + h(2)) = ay(2)y (2) + a,,(2)7,(2) + cco + a5 (2)y,(2) + 1,(2)
To(z + h(2)) = a ,(2)rq(z) + a (2)y,(2) + ... + &, (2)y (5) + r (2)
or in matrix form

(2) Y(z + h(z)) = A(z) Y(z) + R(z).

I have done a great deal of work and have made considerable
progress toward huilding a sétisfactory theory of equation (1).
So far as I know this is a new field. The last word on it
probably never will be written. 1In the report which follows
theorems are stated. Usually, for the sake of brevity, vroofs
are not civen., I understand that brevity is desired by the
management of NASA. I have found some of the theorems difficult

and have taken a great deal of time in their discovery and proof.

It is planned to submit the material in this report with

detailed proofs to one of the American Journals of mathematics.



First! | In order to treat equation (1) it is necessary
to develop proper tools.‘.‘ Tﬁé"'most usefu? tool that I have |
found is (5) below. 4 most useful special form of (f{j is
(3). These series sre of interest in themselves and mch
of this report is siven té their study.

y gy

(3) ta
£y qy(2) 2 (24 9;(2))(z + g,(2))

q;(2) a,(2)
4+ a -
2 (34 qy(2))(z + ay(2)(z + ay(z))

PRI Y

ql(z) q2(Z) esssee nal(z)

+ a +

(2 + qy(2)) (2 + qp(2))e.u(z + q(2))

vcese s

Ve let qn(z) qnml(z) oo nmjﬂ.(z) = (qn(z))(j),
(2 + qu(@)(z + q_1(2)eeelz + a_59(2)) = (2 + q (2D

Similar notation is used in other circumstances., It is be-
liaved that the context will always mezke clear the nasture of

the notation. In varticular, O(j) = 1, even O(o) -1,

We now write in place of (3)

oo

(g ()
() = a =l

el O (z + qn(z))(n)

¥We shall for the prasent concentrate on (5) below.



=Na)
(5) == c (a5 Qpy oes) ——2
= Cn'9 s 9 "z . c‘n(z))(m)

In order for (5) to be meaningful it is, of course, necessary
to restrict cn(ql, P8 eeo). We shall write this cn(q) and

adopt similar notastion with other functions.

We shall frequently have occasion to refer to

S0
(6) = c {q(z)) L
— chra (zo R qn(Z))(n)

We let 2z » x + yi where x and y are real and i the
imaginary unit. We also let qj(z) - rj(z) + sj(z) i where
rj(z) and sj(z) are real, We require that rj(z) > 0 and that
rj(z) ~» 0o when J —=r o, and we sometimes require that
sj(z)/r J(z) —> 0 uniformly over the region considered, and

that g( z) be monotonically increasing in x.

There is a relation between hn( z) and hn&l(z) of equa-

tion (1). This relation does not necessarily exist between

(2) and (z). To emphasize this point the letter "n®
Q'2) 20C A =2

was changed to"q". In section 3 we return to the “h" _92

equation (1).




2, Series (5)

(26 + aylzg)) {5y *+ ay(zg)eeo(zy + ay(20)

Let bn(zoz) - -
(z + qy(2))(2z * q,y(2))0..(2 + q.(2))

- oo
Theorem 1, TLet x. > 0. 1In case =_ (y. + s.('z))z‘/(x * :z'.(z))2
0~ . :’,,1 0 Jd 0 J

converges uniformly to a bounded function over the half-plane
X 2 Xg then

(1) bn( zoz) remains uniformly bounded over the half-plane
x> Xq and

(ii) given any two positive constants a and b and rositive

integer m there exists a corresponding nimber N, independent

of z such that over the half plane x > Xq

l bn(z, 20)1 < ¥/[a(x - xo)m + b].

Theorem 2., Let A. b =b

el bn’ also let a and b be positive

S0
constants and m a positive integer. If 2 [yo + fn(z)]z/ [xo > rn-(z)]z
n+1

converges uniformly over the hslf-vlane x > X5 to a bounded funcition

%0
then _.S:_ l Abn( zoz) / is uniformly bounded over the sectorial
n=l

region defined by ‘y - Yo lﬁ [a(x - xo)m + bl{x - xo) and x 2 X,

R0
Theorem 3, If Xq > 0 then .._....;

J=1
formly bounded over the sector- defined by x > x5 and \y - ;«/O) /x - Xq

A bj(zO’ zy) remains uni-



< tan 0 where 8 is a fixed positive angle less than /2.

& region from which circular neighborhoods, with
positive minimum racius, of all those points at which
z + q.(2) = 0 for any j are removed is called a deleted
.) .

region,

Theorem L. If (6) converges uniformly over the deleted
sectorial region, R, defined by x > X, and \y - yol Hx - xo) < tan ©
where 0 is any fixed positive angle then (5) converges uni-
formly over R also,
<« -
Theorem 5, If % [y * sj(z)]z/[xo + rj(z)]2 converges
uniformly to a bounded function and if (6) converges uni-
formly over the deleted region S def_ined by x 2 Xq and
ly - Yo l < [a(x - xo)m +b){x - xo) where a and b are any
positive constants and m any positive integer then (5) con-

verges uniformly over S also.

Theorem 6. If (5) converges absolutely at z = z, and if

oo .
= [370 + sn(z)]z/[xo + rn( z) ]2 converges uniformly to a
n=) ‘

c (alzy))
bounded fiviction and if ——————— < M then (5) converges ab-
c (az))

solutely uniformly over the half-plane defined by x > Xg



. ¢ Theorem 7. If (6) coii;c";r‘é,’,;'ég-f'.'ébSOIutely at z, then () .

| converges absolutely uni mly over the deleted sectorial

A region defined by x > xo and [y Yo ’ /x - X, $ te0 8 where

0< 8 <1/,
%o
Theorem 8, If mis a nositlve integer and if = q:j
sz'l

where s > m + 1 convergesuniformly over the half-plane
x 3 X, and diverges when x £ m then (3) converges at the

(o4

same pcints as does Z_ c 'egn where gy ™ :_( =-1)j Z_
N - nél 1’1. ;':1 J ol .]

The two series also converge absolutely at the same points.

In case the qj’s are constants and m = 1 then

Fov-Y '

- Ch e®™ is a Dirichlet series.
n=)

3, Transformations of Series

I

Series of type (5) are, of course, subject to classical

theorams on absolute and uniform convergence.

In this section we shall assume absolute convergence and

" than when z is real h(z) is real and positive and hj+1 - hj

oo
also that =_ —e(—-)—— is divergent.

n=l

>0



(a) Step-up theorems

Theorem 9. ILet k > 1 be 'an integer. Let

2 o —
(1) ®(z) = c_,.1{a) —
mo o't .(z + hn+1(z))(n+1)
then also

)
(8) Mz) = 2 1n

=0 +1, 9

n (S + hn+k)(n )
where

n

2B, = :?_.;(_) ¢4,1((2)) (b 44(2) = hy(2))
and in general
B -= .3 [ {r-3)
K " <=5k’ Poekd 7 e

We thus have additionzl representations for F(z).

Notice the return to the letter "h* which is subject to

the definition written at the beginning of this report.

(b) Step-down theorems

Theorem 10. If F(z) is given by (8) then it ie also given by (7).

Theorem 11, If

)
- 1

Flz) = > ¢ (h) -
o ot1 (e + hm-k)(mﬂ



then also

o2 ¢ (h)(h,_4 ~h } + ¢ (h)
Fz) = :E: n~1 k 1(n) k+n«2 n
n=1 (z + h e 2)

This stev-down process can be repeated.

(¢) Multiplication

The discovery and proof of a satisfactory multiplica-~

tion theorem was the most difficult thing in this research,

Theorem 12, Let

1
...§_ a_.-(h)
1 +1
=0 n+ (z . hn+1(z))(n )
and
.= 1
1 1
n=0 :{z + hn+l(2))(n+ )
then
= L
FF, = c_(h)
12 w1l D (z + h)Zn)
where
- :fgi bj 3Bn [for jBn’ see Theorem 9]

It is to be noticed that st depands upbn Bys 295 ooy By seo

ard h, not the b's and not z except through h and the a's.
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b

If thg a's and h are constants with reference to z then so

are the ¢'s. Our theorem then stétes that the preduct

of two functions revresented by series of type (5) can be
represented by anothsr series of the same type. In particular
that the product of two functions given by factorial series

can be represented by a factorial series, a known result.

. Uniqueness Theorem

a (h)

oc_
Theorem 13, If :E;

- converces uniformly
n0 (z +h (a)) ™0

(h
an‘L)

- >0
(x « b (2) "D

to zero over the x-axis when x > xo and if

when x —2> 4@ then an(h) = 0,

S. General Existence Theorem

Teorem 1., Let h(z) = h(x) be real and continvous, positive
and monotonically increasing in x., If we choose any real number,
¢, and in the complex plane draw the lines, x « ¢, x = ¢ + hl(c),
X=c+ h2(c) «oox=c+h(c)+.... Then in the bands
c<x<c+ hl(c), c+ hl(c) <Sx<c+ h2(c),°e, c + hn_l(c)
<x<c+ hn(c) assipgn y arbitrarily. Then, provided the

coefficients in (1) are defined when x > ¢, there exists ons



11

e
-and only one solution of-($D ih’£he'ha1f-plane X 2 ¢, which
hés the values Just assigﬁeGJin:the n bands as aboﬁe de-

termined.

- e

As & matter of fact, the requirement that h(z) be real

and positive is unnecessarily restrictive. However, it does

give us a picture of bands similar to the picture usually

considered when h = 1, which.ig the case in the ordinary

difference equation.

6. A Particular Solution of the Non-homogenesous Equaticn

The series which we have discussed in this report sre
of interest in themselves and doubtless huve many interesting
applications. We proceed to aprly them to the non-homogeneous
difference equation with varying difference intervals as ex-

plained in section 1 of this parer.

Consider
(9) polz)¥lz) + py(2)y(z + hy(2)) + py(2)y(z + hy(z)) + coo +
+ p(2)y(z + b (2)) = R(z).
We assume that each of the coefficients Pgs cecs Py and R(z)

are expressed in form (1) below
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(3

(lQ) _a_j(h)(z +h + af(j-l)(h)(z + hj-l)(j-l) O

3)
< 1
+ aal(h)(z + hl) + ao(n) = an(h) —
n=l (z + )
where amj, -e05 2y are bounded in &, We assume, mersover,
that the series are absolutely convergent when x > X3¢
We assume R ¥ O and pn(z) £ 0 at ahy point when x > %o
Theorem 15, Equation {9) has a unigue solution expressible

in the form (10) when x > Xqo

The general idea of the proof is to assume y an absolutely
convergent series of the form (10), apply ster-up and step-
down and multiplicatioen theorems. Then svply the method of
undetermined coefficients consistent with our uniqueness
theorem. We obtain a formal solution, to show that this
formsl solution converges absolutely we set up a majorant

series as is frequently done in analogous ceses in classical

mathematics.,

If this process is applied to the homogeneous eguation,

we get y = 0,

7. Gesneral Periodic Functions

A function P(2z) will be called gerersl veriodic if when



x.g xo ‘
P)z) = P(z + hl(z)) = P(z +-h2(z)) = P(z + hB(Z)) = ...
It seems that such functions will have a large theory. I

have not developed this as yet.

R. General Theory of the Homogeneous Linear Equaticn

We consider equaticn (1) with R = 0, namely

(11) py(2)y(z) + p(2)3(z + hy(2)) + ..o + v (2)¥(z + b (2)) = O

It is irmediate that any general periodic function is a
solution of (11) if
pO(Z) + Pl(z) + w00 * pn(z) = 0,
It is also immediate that if y(z) is any solution of (11)
and v(z) any general periodic function then v{z)y(z) is also

a solution of (11).

If we apply our general existence theorem to (11) we can
exhibit as many solutions as we wish. We find that the theorem
of Casorati for ordinary difference equations goes over. First
we call functions, ul(z), cosy uj(z) linearly dependent if there
exist j general vericdic functions vl(z), saos vj(z) such that

vl(z)ul(z) + vz(z)u2(z) * o000 * vj(z)uj(z) = 0

over the portion of the complex plane considered.

13
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9. The Gamma Function

If ,
y b b
1im ;EE: log t - log t dt] exists whera
by t=x N

x > 1 and where surmmation is taken for the values t = x,
X+ hl(z), x + h2(x), cooy X + hn(x) = b, then there sxists

a function not i“entically:zéro satisfying the relation (12)
(12) y{x + h(x)) = x y(x}.

This function can be analytically contimued over the half-
plane x > 0, If we reolace h(x) by h(2z) where h(z) is
analytic and h(z) real when z is real, then the analyiic

function of z will satisfy (12).

If y(z) satisfies (12) then so does v{z)y(z) where

v(z) is general periodic.

10, Analytic Solutions of the Homogeneous Equation

If the coefficients of (11) are analytic over some re-
gion, R, if h{(2) is analytic over R it is desirable %o prove
the existence of analytic solutions and to get a series or
other analytic representation for such functions, Fven if

all initial values belong to one analytic function, our



general existence theorem will not, in general, yield an

analytic function,

Progress hss been ﬁade on this problen, If the
coefficients po(z)9 coay pn(z) are given by series of the
form (10) then a necessary form for a fundamental system
of solutions has been found. I am confident that furthsr
work and perhaps further resirictions will prove that

these series really are solutions.

Emory University
Atlanta, Georgia

May, 196L



